

UPPSALA

UNIVERSITET

Semi-mechanistic pharmacokinetic-pharmacodynamic modeling of rifampicin treatment response in tuberculosis acute mouse model

Chunli Chen¹, Fatima Ortega², Joaquin Rullas-Trincado², Raquel Moreno^{2.3}, Inigo Angulo², Santiago Ferrer², Ulrika SH Simonsson¹

1. Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden

2. GlaxoSmithKline Diseases of Developing World (DDW) Medicines Development Campus, Tres Cantos (Madrid), Spain

3. Tecnalia Research & Innovation-UPV, Vitoria(Alava), Spain

Objectives

Rifampicin is one of four drugs taken as part of a standard treatment regimen for tuberculosis. The aim was to build a semimechanistic pharmacokinetic-pharmacodynamic (PKPD) model of rifampicin in tuberculosis acute mouse model.

Methods

Rifampicin blood concentrations after different single oral doses (1, 3, 10, 30 or 100 mg/kg), single intravenous (12 mg/kg) and

PK Parameters	Typical values	RSE (%)
CL (h ⁻¹)	99.5	8
V (ml)	1180	4
k _a (h ⁻¹)	0.938	14
V at 1 mg/kg (ml)	2260	9
F (%)	0.67	6
IIV on k _a (%)	43.5	26
IIV on CL (%)	8.8	48

multiple oral administrations (10 mg/kg for 3 days) were used in the population PK analysis. One sample from each healthy mouse (n=30) after single dosing administration and several samples from each healthy mouse (n=3) were available from multiple dosing administrations.

C57BL/6 mice (n=60) were intratracheally infected with Mycobacterium tuberculosis H37Rv at day 0^[1]. Rifampicin (1, 3, 26, 30 or 98 mg/kg) was administered daily by oral gavage during day 1 to day 8. Fifteen mice received no treatment (naturalgrowth). Rifampicin treated and non-treated mice were sacrificed at days 2, 3, 4 and 9 and at days 1, 9 and 18, respectively. The lungs were obtained, homogenized and plated to measure the colony-forming units (CFU). All modeling were done using NONMEM, version 7.2 ^[2, 3]. In order to account for PD data below limit of quantification, the M3 method was used. Xpose was used for data exploration and visualization, model diagnostics and model comparison^[4]. PsN^[5] was used for prediction-corrected visual predictive check (pcVPC) of models.

Prop residual error	0.284	9
(%)		

 Table 1. Final PK parameter estimates

PD Parameters	Typical values	2.5% CI	97.5% CI
Inoculum for drug treated mice (CFU/ml)	51648	47236	58373
Inoculum for no drug (CFU/ml)	8525	6961	9813
k _G (h ⁻¹)	0.034	0.033	0.036
k _D (h⁻¹)	0.000001 FIX	-	-
S (h ⁻¹)	7.8E-05	7.1E-05	8.6E-05
k _{SF} (h ⁻¹)	0.036	0.032	0.040
k _{SN} (h ⁻¹)	0.0052	0.0048	0.0057
k _{NS} (h ⁻¹)	0.19	0.15	0.22
k _{FN} (h ⁻¹)	9.9E-07	8.8E-07	1.0E-06
k _{NF} (h ⁻¹)	0 FIX	-	-
۷ _G	0.47	0.41	0.57
I _{MAXG}	0.75	0.73	0.77
IC _{50G} (ug/ml)	0.56	0.49	0.64
¥₽D	2.53	2.32	2.65

Figure 2. Final PKPD model

Results and Discussion

A one compartment model with first-order absorption and elimination provided the best fit to the PK data. The volume of distribution was significantly higher for the lowest oral dose (1 mg/kg). Inter-animal variability (IIV) in absorption rate constant (ka) and clearance (CL) was estimated to 43.8% and 18.9%, respectively. The bioavailability was estimated to 67.6% (Table 1). The pred-corrected VPC is shown in (Figure 1).

E _{MAXFD}	0.47	0.43	0.54
EC _{50FD} (ug/ml)	9.97	9.15	11.18
Slope _{sp} (ml/h*ug)	8.4E-04	7.8E-04	9.4E-04
IIV on Inoculum for drug treated mice (%)	42.3	38.9	45.1
Additive residual error on In scale	0.32	0.28	0.51

 Table 2. Final PD parameter estimates

Figure 3. pcVPC of the mouse rifampicin PKPD model. Blue dots–observations; red line– median of the predcorr observations; Red dotted lines – 5th and 95th percentile of the observed data; blue shaded areas-95% confidence intervals for the 5th percentile and 95th percentiles of simulated data; pink shaded area – 95% confidence interval for the median of the simulated data. Blue solid line in lower plots-median of LOQ data, blue shaded area in lower plots-95% confidence intervals for median of LOQ data

Conclusions

The semi-mechanistic PKPD model captured well the biexponential decline in CFU and was able to link drug effect in a mechanistic way to sub-states of *M. tuberculosis*.

References

[1] Rullas J, García JI, Beltrán M, Cardona PJ, Cáceres N, García-Bustos JF, Angulo-Barturen I. Fast standardized therapeutic-efficacy assay for drug discovery against tuberculosis. Antimicrob Agents Chemother. 2010 May;54(5):2262-4

Figure 1. pcVPC of the mouse rifampicin POPPK model. Blue circles – pred-corr observations; red solid line – median of the observations; red dotted lines – 5th and 95th percentile of the observed data; blue shaded areas- 95% confidence intervals for the 5th percentile and 95th percentiles of simulated data; pink shaded area – 95% confidence interval for the median of the simulated data.

The PD model consisted of fast-multiplying bacteria, slowmultiplying bacteria, non-multiplying bacteria and dead bacteria (Figure 2). The drug effect was incorporated as inhibition on growth rate and stimulation of death rate of fast-multiplying and slow-multiplying bacteria (Table 2). The final PKPD described the data well (Figure 3).

Innovative Medicines Initiative

efpia

Contact information:

*** * * **

Email: <u>chunli.chen@farmbio.uu.se</u>

Address: Box 591, SE-751 24 Uppsala, Sweden

[2] Beal, S., Sheiner, L.B., Boeckmann, A., & Bauer, R.J., NONMEM User's Guides. (1989-2009)

[3] Icon Development Solutions, Ellicott City, MD, USA, 2009

[4] Jonsson EN, Karlsson MO. Xpose - an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed. Jan 1999;58(1):51-64

[5] Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit - a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. Sep 2005;79(3):241-257

Ethics

All animal studies were ethically reviewed and carried out in accordance with European Directive 2010/63/EU and the GSK Policy on the Care, Welfare and Treatment of Animals.

Acknowledgements

The research leading to these results has received funding from the Innovative Medicines Initiative Joint Undertaking (http://www.imi.europa.eu/) under grant agreement n°115337, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution